Making RBD snapshot based mirroring robust for
disaster recovery

Ramana Raja
IBM



Introduction to RBD mirroring
Asynchronous replication of images between clusters carried out by rbd-mirror daemon
Two modes of replication:

e Journal-based

o  Writes to journal before writing to primary image (2X write latency)

o  Mirror daemon reads from journal and replays changes on the non-primary image
e Snapshot-based (focus of talk)

o Schedule crash-consistent mirror-image snapshots on primary image

o Mirror daemon identifies the data/metadata changes between mirror-snapshots

o  Mirror daemon copies the snapshot delta to the non-primary image

To note:

o Enabling ‘fast-diff’ helps determine updated data blocks quickly without scanning full image
o If fast-diff’ not enabled, mirroring will work but will be slower
o Partially applied delta rolled back during failover



Introduction to RBD mirroring

RBD mirroring supports two different configurations

4 N\ )

. . site-a cluster site-b cluster
e One-way replication

o Data replicated from primary cluster to a
Non-primary

Primary RBD
RBD image

Image

secondary cluster

o  Mirror daemon runs only on secondary cluster
RBD-mirror

e Two-way replication
Primary RBD

Non-primary :
image

o Data replicated from primary images on one RBD image

Primary RBD
image

cluster to non-primary on second cluster (and Non-primary
RBD image

\_ J J

Fig: Two-way replication

vice-versa)

o  Mirror-daemon runs on both clusters



Snapshot based mirroring setup

e Enable mirroring on pool
rbd mirror pool enable [--site-name {local-site-name}] {pool-name} image

o  Unlike with journal-based mirroring, snapshot-based mirroring must be explicitly enabled on
each image

e Bootstrap peers

rbd mirror pool peer bootstrap create [--site-name {local-site-name}] {pool-name}
rbd mirror pool peer bootstrap import [--site-name {local-site-name}]
[--direction {rx-only or rx-tx}] {pool-name} {token-path}

o Registers peer and creates user account for mirror-daemon to discover peer cluster



Snapshot based mirroring setup

e Enable mirroring on image

rbd mirror image enable {pool-name}/{image-name} snapshot

e Create mirror snapshots of image
rbd mirror image snapshot {pool-name}/{image-name}

o Recommended: schedule automatic creation of mirror-snapshots using ‘rbd_support’
ceph-mgr module

rbd mirror snapshot schedule add [--pool {pool-name}] [--image {image-name}]|
{interval} [{start-time}]



Mirroring primitives for planned failover

e Demote primary image
rbd mirror image demote {pool-name}/{image-name}

o Marks the image as non-primary (unwriteable to standard RBD clients)
o Creates a demote snapshot

e Promote non-primary image
rbd mirror image promote {pool-name}/{image-name}

o  Works only after demote snapshot is fully synced
o Creates a promote snapshot
o Marks the image as primary (writeable to standard RBD clients)



Mirroring primitives for unplanned failover

e Force promote image
rbd mirror image promote —force {pool-name}/{image-name}

o If changes not fully synced, rolls back image
o Creates a promote snapshot
o Marks the image as primary (writable to standard RBD clients)

o Force promotion leads to split-brain between peers. Split brain will be detected by
mirror-daemon
o  Split brain resolved by demoting the out-of-date image and then requesting resync

e Force resync image
rbd mirror image resync {pool-name}/{image-name}

o Deletes the demoted image and then resyncs from primary
o Image resynced from scratch



Regional disaster recovery architecture in kubernetes

OCM Hub k8s cluster

Ramen hub operator ’J

Automated workload

Failover/Failback

Managed k8s cluster West

Application

o

Persistent E
volume claifns

Rook-Ceph 4
P N >

( )

MONSs, OSDs,
o

.

S

Volumes
g /

Global traffic
manager

Rook-Ceph

N
MONSs, OSDs,
o

Non-primary
9 volumes

\ \

A

RBD async snap mirroring

Application recovery during data
center outages in an entire region

Network latency > 10 ms
Recovery time objective in mins
Recovery point objective in mins

3 cluster solution in Open Cluster
manager (OCM) platform
(hub cluster + 2 managed clusters)

Ramen operator orchestrates
placement of application and its
storage

Persistent volumes backed by
RBD images asynchronously
replicated using snapshot-based
RBD mirroring



Event: “West” available

Event: “West” unavailable

Delete application
resources

Demote +
Force resync

Failover Orchestration

OCM Hub k8s cluster.

‘ Ramen hub operator

>
j R85
@%@@E

) J \\
- Sync stalled (split brain)

[ ... . Sync REFakmissmMirbsewtshiraring : . . l

N

Managed k8s cluster East

Application

Rook-Ceph

o

=

-

MONSs, OSDs,
MGR,

Non-primary

Primary
J

Deploy application
using manifests in git
repos

Restore PV/PVC data

Force promote RBD
images

Rollback images if
semi-synced snapshot delta
+

set as primary



Deploy application
using manifests in git
repos

Wait for demotion
shapshot to be fully
synced

Restore PV/PVC data

Promote non-primary
image

Failback/Relocate Orchestration

Managed k8s cluster West

OCM Hub k8s cluster.

&

‘ Ramen hub operator ’

fpplication

________

Rook-Ceph

Managed k8s cluster East

-

. @ Primary

Non primary
)
A

~N : :
MONSs, OSDs,
o=

%ﬁfﬁe@_-_\

’

Rook-Ceph

Ve

o

o

-

~

MONSs, OSDs,
MGR,

NEHIBENary

J

RBD async snhap mirroring

|

Delete application
resources

Demote primary



Volume data corruption during failover

Issue
e Mirror snapshots taken during active I/O (e.g., untar workload)
e Planned failover (demote primary + promote non-primary)
e Promoted image corrupted. Observed file system and block level corruption

Root cause
e Object maps of mirror snapshots didn’t reflect actual contents of snapshots
e Synced incorrect snapshot delta, which was calculated based on corrupted object map

Fixes

e librbd and krbd: avoid object map corruption in snapshots taken under I/O
https://qithub.com/ceph/ceph/pull/52109

https://github.com/ceph/ceph-client/commit/870611e487

e Added functional tests to validate that images under I/O are mirrored correctly
ceph/ga/workunits/rbd/compare_mirror_images.sh
ceph/qa/workunits/rbd/compare_mirror_image_alternate_primary.sh



https://github.com/ceph/ceph/pull/52109
https://github.com/ceph/ceph-client/commit/870611e487
http://qa/workunits/rbd/compare_mirror_images.sh
https://github.com/ceph/ceph/commit/b7aae5c3c5a1dd24c4cb7ceb499292af00bae680#diff-3e4abc2b8323b419279a10e31d9f25acc37ef4d0491dcd50d68150a1214be056
https://tracker.ceph.com/issues/61616
https://tracker.ceph.com/issues/61472

Mirror snapshot scheduler and blocklisting

Issue

e In Ceph clusters with constrained resources in k8s environment, snapshot scheduler occasionally
stopped working; mirror snapshots not created

e Snapshot-scheduler part of ‘rbd_support’ ceph-mgr module

e ceph-mgr had to be restarted affecting other mgr services (not okay)

Root cause

e Snapshot scheduler’s client was blocklisted by kernel RBD clients wanting exclusive locks
Fixes

e krbd: fixed issue with erroneous blocklisting of other clients
https://qithub.com/ceph/ceph-client/commit/588159009d

e ceph-mgr: made snapshot-scheduler (rbd_support module) recover from blocklisting
https://qithub.com/ceph/ceph/pull/49742

e librbd: fixed ExclusiveLock state machine to propagate blocklist error to caller

https://qgithub.com/ceph/ceph/pull/53829



http://github.com/ceph/ceph-client/commit/588159009d
https://github.com/ceph/ceph/pull/49742
https://github.com/ceph/ceph/pull/53829

Possible hangs in mirroring under high latency

Issue
e Observed unexpected slow down in rbd-mirror daemon mirroring images
Root cause

e rbd-mirror daemon in non-primary cluster tried to remove old mirror snapshots of primary image
e [f latency between was high enough, mirror daemon couldn’t acquire exclusive lock of primary image
in time and kept retrying

Fixes

e librbd: localize snap-remove operation of synced old mirror snapshots on primary cluster
https://github.com/ceph/ceph/pull/51166/

e librbd: clean up demotion snapshots explicitly
https://github.com/ceph/ceph/pull/53251



https://github.com/ceph/ceph/pull/51166/
https://github.com/ceph/ceph/pull/53251

Ongoing work

e Make snapshot based mirroring of clones work
o https://qithub.com/ceph/ceph/pull/55892

e Make snapshot based mirroring propagate discards to secondary
o https://github.com/ceph/ceph/pull/52358

e Supporting snapshot based mirroring of image groups
o https://qithub.com/ceph/ceph/pull/53793

Future Work
e Rigorous testing of multiple RBD mirror daemons load balancing the syncing of multiple
images

e More efficient than force-resyncing from scratch


https://github.com/ceph/ceph/pull/55892
https://github.com/ceph/ceph/pull/52358
https://github.com/ceph/ceph/pull/53793

Takeaways

e Regional disaster recovery of kubernetes container workloads using RBD storage
o RBD mirroring setup:
m [wo-way snapshot-based mirroring
m  Single RBD mirror daemon on each cluster
o failover/failback/relocate of application and its storage orchestrated by Ramen operator

e Lots of improvement in various layers of RBD snapshot based mirroring feature
o librbd client
o kernel rbd client
o RBD mirror-snapshot scheduler in mgr-module

e Upcoming features/fixes:
o  Mirroring of image groups
o  Mirroring of RBD clones



