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Introduction to RBD mirroring
Asynchronous replication of images between clusters carried out by rbd-mirror daemon
Two modes of replication:

e Journal-based

o  Writes to journal before writing to primary image (2X write latency)

o  Mirror daemon reads from journal and replays changes on the non-primary image
e Snapshot-based (focus of talk)

o Schedule crash-consistent mirror-image snapshots on primary image

o Mirror daemon identifies the data/metadata changes between mirror-snapshots

o  Mirror daemon copies the snapshot delta to the non-primary image

To note:

o Enabling ‘fast-diff’ helps determine updated data blocks quickly without scanning full image
o If fast-diff’ not enabled, mirroring will work but will be slower
o Partially applied delta rolled back during failover



Introduction to RBD mirroring

RBD mirroring supports two different configurations
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Snapshot based mirroring setup

e Enable mirroring on pool
rbd mirror pool enable [--site-name {local-site-name}] {pool-name} image

o  Unlike with journal-based mirroring, snapshot-based mirroring must be explicitly enabled on
each image

e Bootstrap peers

rbd mirror pool peer bootstrap create [--site-name {local-site-name}] {pool-name}
rbd mirror pool peer bootstrap import [--site-name {local-site-name}]
[--direction {rx-only or rx-tx}] {pool-name} {token-path}

o Registers peer and creates user account for mirror-daemon to discover peer cluster



Snapshot based mirroring setup

e Enable mirroring on image

rbd mirror image enable {pool-name}/{image-name} snapshot

e Create mirror snapshots of image
rbd mirror image snapshot {pool-name}/{image-name}

o Recommended: schedule automatic creation of mirror-snapshots using ‘rbd_support’
ceph-mgr module

rbd mirror snapshot schedule add [--pool {pool-name}] [--image {image-name}]|
{interval} [{start-time}]



Mirroring primitives for planned failover

e Demote primary image
rbd mirror image demote {pool-name}/{image-name}

o Marks the image as non-primary (unwriteable to standard RBD clients)
o Creates a demote snapshot

e Promote non-primary image
rbd mirror image promote {pool-name}/{image-name}

o  Works only after demote snapshot is fully synced
o Creates a promote snapshot
o Marks the image as primary (writeable to standard RBD clients)



Mirroring primitives for unplanned failover

e Force promote image
rbd mirror image promote —force {pool-name}/{image-name}

o If changes not fully synced, rolls back image
o Creates a promote snapshot
o Marks the image as primary (writable to standard RBD clients)

o Force promotion leads to split-brain between peers. Split brain will be detected by
mirror-daemon
o  Split brain resolved by demoting the out-of-date image and then requesting resync

e Force resync image
rbd mirror image resync {pool-name}/{image-name}

o Deletes the demoted image and then resyncs from primary
o Image resynced from scratch



Regional disaster recovery architecture in kubernetes
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Volume data corruption during failover

Issue
e Mirror snapshots taken during active I/O (e.g., untar workload)
e Planned failover (demote primary + promote non-primary)
e Promoted image corrupted. Observed file system and block level corruption

Root cause
e Object maps of mirror snapshots didn’t reflect actual contents of snapshots
e Synced incorrect snapshot delta, which was calculated based on corrupted object map

Fixes

e librbd and krbd: avoid object map corruption in snapshots taken under I/O
https://qithub.com/ceph/ceph/pull/52109

https://github.com/ceph/ceph-client/commit/870611e487

e Added functional tests to validate that images under I/O are mirrored correctly
ceph/ga/workunits/rbd/compare_mirror_images.sh
ceph/qa/workunits/rbd/compare_mirror_image_alternate_primary.sh



https://github.com/ceph/ceph/pull/52109
https://github.com/ceph/ceph-client/commit/870611e487
http://qa/workunits/rbd/compare_mirror_images.sh
https://github.com/ceph/ceph/commit/b7aae5c3c5a1dd24c4cb7ceb499292af00bae680#diff-3e4abc2b8323b419279a10e31d9f25acc37ef4d0491dcd50d68150a1214be056
https://tracker.ceph.com/issues/61616
https://tracker.ceph.com/issues/61472

Mirror snapshot scheduler and blocklisting

Issue

e In Ceph clusters with constrained resources in k8s environment, snapshot scheduler occasionally
stopped working; mirror snapshots not created

e Snapshot-scheduler part of ‘rbd_support’ ceph-mgr module

e ceph-mgr had to be restarted affecting other mgr services (not okay)

Root cause

e Snapshot scheduler’s client was blocklisted by kernel RBD clients wanting exclusive locks
Fixes

e krbd: fixed issue with erroneous blocklisting of other clients
https://qithub.com/ceph/ceph-client/commit/588159009d

e ceph-mgr: made snapshot-scheduler (rbd_support module) recover from blocklisting
https://qithub.com/ceph/ceph/pull/49742

e librbd: fixed ExclusiveLock state machine to propagate blocklist error to caller

https://qgithub.com/ceph/ceph/pull/53829
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Possible hangs in mirroring under high latency

Issue
e Observed unexpected slow down in rbd-mirror daemon mirroring images
Root cause

e rbd-mirror daemon in non-primary cluster tried to remove old mirror snapshots of primary image
e [f latency between was high enough, mirror daemon couldn’t acquire exclusive lock of primary image
in time and kept retrying

Fixes

e librbd: localize snap-remove operation of synced old mirror snapshots on primary cluster
https://github.com/ceph/ceph/pull/51166/

e librbd: clean up demotion snapshots explicitly
https://github.com/ceph/ceph/pull/53251



https://github.com/ceph/ceph/pull/51166/
https://github.com/ceph/ceph/pull/53251

Ongoing work

e Make snapshot based mirroring of clones work
o https://qithub.com/ceph/ceph/pull/55892

e Make snapshot based mirroring propagate discards to secondary
o https://github.com/ceph/ceph/pull/52358

e Supporting snapshot based mirroring of image groups
o https://qithub.com/ceph/ceph/pull/53793

Future Work
e Rigorous testing of multiple RBD mirror daemons load balancing the syncing of multiple
images

e More efficient than force-resyncing from scratch
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Takeaways

e Regional disaster recovery of kubernetes container workloads using RBD storage
o RBD mirroring setup:
m [wo-way snapshot-based mirroring
m  Single RBD mirror daemon on each cluster
o failover/failback/relocate of application and its storage orchestrated by Ramen operator

e Lots of improvement in various layers of RBD snapshot based mirroring feature
o librbd client
o kernel rbd client
o RBD mirror-snapshot scheduler in mgr-module

e Upcoming features/fixes:
o  Mirroring of image groups
o  Mirroring of RBD clones



