
Making RBD snapshot based mirroring robust for
disaster recovery

Ramana Raja
IBM

Introduction to RBD mirroring
Asynchronous replication of images between clusters carried out by rbd-mirror daemon

Two modes of replication:

● Journal-based
○ Writes to journal before writing to primary image (2X write latency)
○ Mirror daemon reads from journal and replays changes on the non-primary image

● Snapshot-based (focus of talk)
○ Schedule crash-consistent mirror-image snapshots on primary image
○ Mirror daemon identifies the data/metadata changes between mirror-snapshots
○ Mirror daemon copies the snapshot delta to the non-primary image

 To note:

○ Enabling ‘fast-diff’ helps determine updated data blocks quickly without scanning full image
○ If ‘fast-diff’ not enabled, mirroring will work but will be slower
○ Partially applied delta rolled back during failover

Introduction to RBD mirroring

RBD mirroring supports two different configurations

● One-way replication

○ Data replicated from primary cluster to a

secondary cluster

○ Mirror daemon runs only on secondary cluster

● Two-way replication

○ Data replicated from primary images on one

cluster to non-primary on second cluster (and

vice-versa)

○ Mirror-daemon runs on both clusters

Non-primary
RBD image

Primary RBD
Image

Non-primary
RBD image

Non-primary
RBD image

Primary RBD
image

Primary RBD
image

RBD-mirror

RBD-mirror

site-a cluster site-b cluster

Fig: Two-way replication

Snapshot based mirroring setup

● Enable mirroring on pool

rbd mirror pool enable [--site-name {local-site-name}] {pool-name} image

○ Unlike with journal-based mirroring, snapshot-based mirroring must be explicitly enabled on
each image

● Bootstrap peers

rbd mirror pool peer bootstrap create [--site-name {local-site-name}] {pool-name}

rbd mirror pool peer bootstrap import [--site-name {local-site-name}]

[--direction {rx-only or rx-tx}] {pool-name} {token-path}

○ Registers peer and creates user account for mirror-daemon to discover peer cluster

Snapshot based mirroring setup

● Enable mirroring on image

rbd mirror image enable {pool-name}/{image-name} snapshot

● Create mirror snapshots of image

rbd mirror image snapshot {pool-name}/{image-name}

○ Recommended: schedule automatic creation of mirror-snapshots using ‘rbd_support’
ceph-mgr module

rbd mirror snapshot schedule add [--pool {pool-name}] [--image {image-name}]
{interval} [{start-time}]

Mirroring primitives for planned failover

● Demote primary image

rbd mirror image demote {pool-name}/{image-name}

○ Marks the image as non-primary (unwriteable to standard RBD clients)
○ Creates a demote snapshot

● Promote non-primary image

rbd mirror image promote {pool-name}/{image-name}

○ Works only after demote snapshot is fully synced
○ Creates a promote snapshot
○ Marks the image as primary (writeable to standard RBD clients)

Mirroring primitives for unplanned failover
● Force promote image

rbd mirror image promote –force {pool-name}/{image-name}

○ If changes not fully synced, rolls back image
○ Creates a promote snapshot
○ Marks the image as primary (writable to standard RBD clients)

 Note:

○ Force promotion leads to split-brain between peers. Split brain will be detected by
mirror-daemon

○ Split brain resolved by demoting the out-of-date image and then requesting resync
● Force resync image

rbd mirror image resync {pool-name}/{image-name}

○ Deletes the demoted image and then resyncs from primary
○ Image resynced from scratch

Regional disaster recovery architecture in kubernetes

WAN
Persistent
volume claims

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Primary
Volumes

Application

 Managed k8s cluster East

Rook-Ceph

MONs, OSDs,
MGR,

Non-primary
volumes

Application

 RBD async snap mirroring

Ramen hub operator

Automated workload
Failover/Failback

Global traffic
manager

● Application recovery during data
center outages in an entire region

● Network latency > 10 ms
Recovery time objective in mins
Recovery point objective in mins

● 3 cluster solution in Open Cluster
manager (OCM) platform

 (hub cluster + 2 managed clusters)

● Ramen operator orchestrates
placement of application and its
storage

● Persistent volumes backed by
RBD images asynchronously
replicated using snapshot-based
RBD mirroring

 OCM Hub k8s cluster

Failover Orchestration

 Managed k8s cluster East

Rook-Ceph

MONs, OSDs,
MGR,

Non-primary

Application

Ramen hub operator

 OCM Hub k8s cluster

Event: “West” unavailable

Restore PV/PVC data

Force promote RBD
images

Rollback images if
semi-synced snapshot delta
+
set as primary

Primary

Event: “West” available

WAN
Persistent
volume claims

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Primary

Application

 RBD async snap mirroring

WAN
Persistent
volume claims

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Primary

Application

 Sync stalled (split brain)

WAN
Persistent
volume claims

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Primary

Application

WAN

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Primary

Application

Delete application
resources

 Sync stalled (split brain)

WAN

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Non-primary

Application

 Force resync from scratch

Demote +
Force resync

WAN

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Non-primary

Application

 RBD async snapshot based mirroring

Deploy application
using manifests in git
repos

Failback/Relocate Orchestration

 Managed k8s cluster East

Rook-Ceph

MONs, OSDs,
MGR,

Application

Primary

Ramen hub operator

 OCM Hub k8s cluster

WAN

 Managed k8s cluster West

Rook-Ceph

MONs, OSDs,
MGR

Non primary

Application

 RBD async snap mirroring

Wait for demotion
snapshot to be fully

synced

Promote non-primary
image

Delete application
resources

Demote primary
Non-primary

Primary

Deploy application
using manifests in git
repos

Restore PV/PVC data

Volume data corruption during failover
Issue

● Mirror snapshots taken during active I/O (e.g., untar workload)
● Planned failover (demote primary + promote non-primary)
● Promoted image corrupted. Observed file system and block level corruption

Root cause
● Object maps of mirror snapshots didn’t reflect actual contents of snapshots
● Synced incorrect snapshot delta, which was calculated based on corrupted object map

Fixes
● librbd and krbd: avoid object map corruption in snapshots taken under I/O

https://github.com/ceph/ceph/pull/52109
 https://github.com/ceph/ceph-client/commit/870611e487

● Added functional tests to validate that images under I/O are mirrored correctly
ceph/qa/workunits/rbd/compare_mirror_images.sh
ceph/qa/workunits/rbd/compare_mirror_image_alternate_primary.sh

https://tracker.ceph.com/issues/61616 (librbd fix in quincy, reef, squid)
https://tracker.ceph.com/issues/61472

[PATCH 0/2] rbd: avoid fast-diff corruption in snapshot-based mirroring

Functional tests:
https://tracker.ceph.com/issues/61617

https://github.com/ceph/ceph/pull/52109
https://github.com/ceph/ceph-client/commit/870611e487
http://qa/workunits/rbd/compare_mirror_images.sh
https://github.com/ceph/ceph/commit/b7aae5c3c5a1dd24c4cb7ceb499292af00bae680#diff-3e4abc2b8323b419279a10e31d9f25acc37ef4d0491dcd50d68150a1214be056
https://tracker.ceph.com/issues/61616
https://tracker.ceph.com/issues/61472

Mirror snapshot scheduler and blocklisting
Issue

● In Ceph clusters with constrained resources in k8s environment, snapshot scheduler occasionally
stopped working; mirror snapshots not created

● Snapshot-scheduler part of ‘rbd_support’ ceph-mgr module
● ceph-mgr had to be restarted affecting other mgr services (not okay)

Root cause

● Snapshot scheduler’s client was blocklisted by kernel RBD clients wanting exclusive locks

Fixes

● krbd: fixed issue with erroneous blocklisting of other clients
https://github.com/ceph/ceph-client/commit/588159009d

● ceph-mgr: made snapshot-scheduler (rbd_support module) recover from blocklisting
https://github.com/ceph/ceph/pull/49742

● librbd: fixed ExclusiveLock state machine to propagate blocklist error to caller
https://github.com/ceph/ceph/pull/53829

- In certain scenarios the OSDs were slow to process RBD requests.

This lead to the rbd_support module's RBD client not being able to
gracefully handover a RBD exclusive lock to another RBD client.
After the condition persisted for some time, the other RBD client
forcefully acquired the lock by blocklisting the rbd_support module's
RBD client, and consequently blocklisted the module's RADOS client. The
rbd_support module stopped working. To recover the module, the entire
mgr service had to be restarted which reloaded other mgr modules.

- Instead of recovering the rbd_support module from client blocklisting

by being disruptive to other mgr modules, recover the module
automatically without restarting the mgr serivce. On client getting
blocklisted, shutdown the module's handlers and blocklisted client,
create a new rados client for the module, and start the new handlers.

http://github.com/ceph/ceph-client/commit/588159009d
https://github.com/ceph/ceph/pull/49742
https://github.com/ceph/ceph/pull/53829

Possible hangs in mirroring under high latency

Issue

● Observed unexpected slow down in rbd-mirror daemon mirroring images

Root cause

● rbd-mirror daemon in non-primary cluster tried to remove old mirror snapshots of primary image
● If latency between was high enough, mirror daemon couldn’t acquire exclusive lock of primary image

in time and kept retrying

Fixes

● librbd: localize snap-remove operation of synced old mirror snapshots on primary cluster
https://github.com/ceph/ceph/pull/51166/

● librbd: clean up demotion snapshots explicitly
https://github.com/ceph/ceph/pull/53251

https://github.com/ceph/ceph/pull/51166/
https://github.com/ceph/ceph/pull/53251

Ongoing work
● Make snapshot based mirroring of clones work

○ https://github.com/ceph/ceph/pull/55892
● Make snapshot based mirroring propagate discards to secondary

○ https://github.com/ceph/ceph/pull/52358
● Supporting snapshot based mirroring of image groups

○ https://github.com/ceph/ceph/pull/53793

Future Work
● Rigorous testing of multiple RBD mirror daemons load balancing the syncing of multiple

images
● More efficient than force-resyncing from scratch

https://github.com/ceph/ceph/pull/55892
https://github.com/ceph/ceph/pull/52358
https://github.com/ceph/ceph/pull/53793

Takeaways

● Regional disaster recovery of kubernetes container workloads using RBD storage
○ RBD mirroring setup:

■ Two-way snapshot-based mirroring
■ Single RBD mirror daemon on each cluster

○ failover/failback/relocate of application and its storage orchestrated by Ramen operator

● Lots of improvement in various layers of RBD snapshot based mirroring feature
○ librbd client
○ kernel rbd client
○ RBD mirror-snapshot scheduler in mgr-module

● Upcoming features/fixes:
○ Mirroring of image groups
○ Mirroring of RBD clones

